

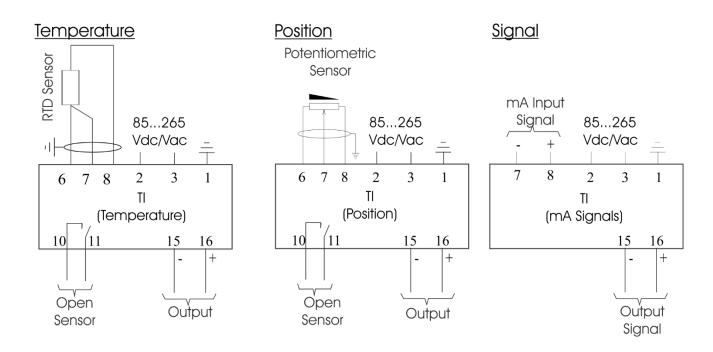
Insulated Transducer - TI

The Insulated Transducer (TI) is used in monitoring and protection systems for power transformers and reactors. Its function is to convert analog signals from temperature sensors (RTD), position of taps (potentiometric transmitters of on-lap tap changers), or current loop (signals in mA) into output values proportional to the input values. In the case of a RTD input, the TI performs the linearization of the sensor curve to obtain increased accuracy.

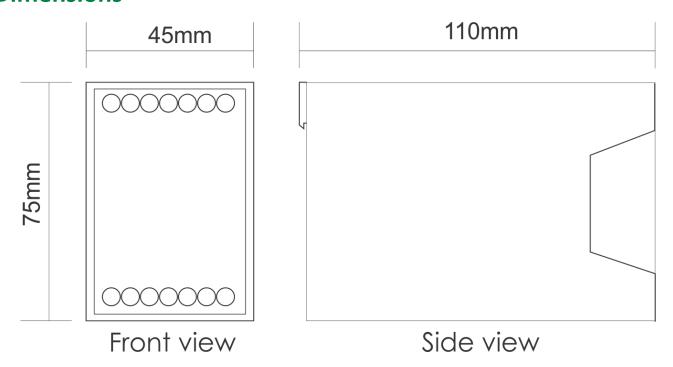
The TI was designed with a universal power input (85 to 265 Vdc/Vac, 50/60 Hz), in order to comply with all types of power supply commonly used in auxiliary systems of substations. It is provided with galvanic insulation between the input, output, and power supply circuits.

In addition to the current loop output, the TI has also a normally open (N.O). contact to signal any input sensor loss of signal (for temperature and tap position versions only). Two LED's provide local visualization. A green light to signal transducer on, and a red light to signal an alarm contact actuation due to a sensor loss.

Technical Data


Power supply	85 to 265 Vdc/Vac – 50/60 Hz	
Consumption	≤ 3 W	
Operation temperature	- 10 to + 85 °C	
la acuta	Pt 100Ω to 0 °C , Cu 10Ω to 25 °C, Potentiometric	
Inputs	transmitter or mAdc current	
Outputs	1 contact NO: Loss of sensor	
Maximum switching power	60 W / 62,5 VA	
Maximum switching voltage	220Vdc/250Vac	
Maximum conduction current	2 A	
Current loop		
Output current (ma):	1, 5, 10, 20	
Maximum load (Ω):	10.000, 2.000, 1.000, 500	
Class of accuracy:	0.5% of full scale	
Measuring range:	0~150 °C³	
Response time:	< 50 ms	
Voltage drop at inputs ^b :	1V	
LEDs:	GREEN: ON	
	RED: Sensor fail	
Mounting:	DIN Rail 35 mm	
Wire size:	0,3 to 2,5mm ² , 22 to 12 AWG	

a) In case of Temperature Transducer


b) In case of Signal Transducers (input mA)

Connection Diagrams

Dimensions

Order Specification

ТҮРЕ	INPUT	OUTPUT CURRENT	TOTAL RESI POTENTIOMET	STANCE OF RIC SENSOR (Ω)
1 - Temperature	See table below	1 – 01 mA	120	240
2 – Tap position		2 – 05 mA	130	260
3 – mA Signal		3 – 010 mA	160	320
		4 – 020 mA	180	1280
		5 – 420 mA	200	6400
			220	Note 2

	INPUT	
TEMPERATURE TRANSDUCER	POSITION TRANSDUCER	SIGNAL TRANSDUCER (mA)
1 – Pt100Ω@0°C	0 – Not applicable	1 – 01 mA
2 – Cu10Ω@25°C		2 – 05 mA
		3 – 010 mA
		4 – 020 mA
		5 – 420 mA

Use the codes highlighted in bold in the table above to place the order, as shown in note 2:

11	ТҮРЕ	INPUT	OUTPUT CURRENT	TOTAL RESISTANCE OF POTENTIOMETRIC SENSOR (Ω)

Notes:

1) Applicable only to the Position Transducer,

Total resistance of potentiometric sensor = (N-1) * R, where:

N = number of tap positions and R = step resistance of potentiometric sensor.

2) Other values of potentiometric position sensor are possible under request.

Example:

Position Transducer for total resistance of potentiometric sensor 320 Ω , with 4-20 mA output.

Type Testing

Immunity to electrical transients (IEC 60255-22-1)		
1st cycle peak value:	2,5 kV	
Frequency:	1,1 MHz	
Repeat time and rate:	2s, 400 surges/sec.	
Decay at 50%:	5 cycles	
Voltage impulse (IEC 60255-5)		
Wave shape:	1,2 / 50 ms	
Amplitude and energy:	5 kV	
Number of pulses:	3 negative and 3 positive, 5 s interval	
Voltage applied (IEC 60255-5)		
Voltage supportable at industrial frequency:	2 kV 60 Hz 1 min against ground	

BRAZIL

Treetech Sistemas Digitais Ltda Praça Claudino Alves, 141, Centro CEP 12.940-000 - Atibaia/SP + 55 11 2410-1190

<u>comercial@treetech.com.br</u> <u>www.treetech.com.br</u>