

Monitor para Torque de Conmutador

Por poseer partes móviles que conectan altas tensiones y corrientes, el Conmutador Bajo Carga (OLTC) es, estadísticamente, una de las principales fuentes de fallas en transformadores, contribuyendo para eso las fallas mecánicas. Para detectar esos defectos en fase incipiente y reducir la probabilidad de paradas inesperadas, el IDM monitora en línea el torque del OLTC, alertando para alteraciones en su firma típica, que indican fallas en desarrollo.

La energía para la operación del conmutador es suministrada por un mecanismo motorizado, que ejerce mayor o menor torque en cada etapa de la conmutación, creando una "firma" típica, que en condiciones normales se repite a cada conmutación realizada. Problemas mecánicos en el conmutador modificarán esa firma, permitiendo detectarlos en fase incipiente.

Como el torque desarrollado por el motor es proporcional a la potencia eléctrica, el IDM lo monitorea indirectamente midiendo el consumo del motor, con el objetivo de detectar y emitir alarmas en el caso de eventuales modificaciones en esa firma o en el tiempo de conmutación. Así, las fallas mecánicas en el conmutador pueden ser detectadas en fase aún incipiente. Para eso, el Monitor de Torque IDM supervisa en línea diversas variables:

- Oscilografía de las corrientes, tensiones (opcional) y potencia consumida por el motor durante las operaciones, en modo monofásico o trifásico.
- Posición de tap del conmutador (opcional), a través de corona potenciométrica o entrada de corriente (por ejemplo, 4-20 mA).
- Temperatura del mecanismo de accionamiento (opcional).
- Corriente del calentador anticondensación del mecanismo (opcional).
- Corriente de línea interrumpida por los contactos del conmutador (opcional).
- Contacto auxiliar de alarma del disyuntor del motor y/o comando actuado (opcional).

Para el diagnóstico del OLTC, el IDM correlaciona esas mediciones con algoritmos de ingeniería especialistas, obteniendo informaciones útiles para el diagnóstico y pronóstico, conforme aplicable:

- Firma de potencia y energía usada por el motor durante la operación.
- Corriente de partida del motor.
- Firma de tiempo para operación del conmutador.
- Tensiones mínimas y máximas en el motor durante la operación.
- Nº de operaciones y tiempo de servicio del conmutador, totales y después del último mantenimiento.
- Integración de la corriente conmutada, indicativa de desgaste de los contactos del conmutador, total y después del último mantenimiento.
- Tiempo restante para mantenimiento por tiempo de servicio, número de operaciones e integración de la corriente conmutada.
- Funcionamiento del calentador del mecanismo, evitando condensación de agua y oxidación.
- Temperatura del mecanismo de accionamiento muy baja o alta.
- Sub y sobretensión de la alimentación del motor.

Con las mediciones y los cálculos de los algoritmos de ingeniería, el IDM emite alarmas en el caso de anormalidades, así como avisos de mantenimiento con antecedencia programada por el usuario, a través de un sistema de señalización que permite diagnosticar rápidamente el estado del conmutador, con accionamiento de contactos de salida:

- Verde conmutador en buen estado. Ningún mantenimiento necesario;
- Azul conmutador en buen estado. Aviso para mantenimiento programado;
- Amarillo alarma de anormalidad menor;
- Rojo alarma de anormalidad mayor.

Funciones Opcionales

Opcional 1 - Protocolo DNP3:

Protocolo de comunicación esclavo DNP3 nivel 1, RTU, con soporte para marca de tiempo (timestamp) con precisión de 1 ms. A través del protocolo DNP3, el usuario puede acceder a consultas y programación de parámetros, comprobación de mediciones analógicas y digitales, y eventos de alarma.

Opcional 2 - Memoria de Almacenaje de Datos:

Permite almacenar datos y eventos pasados en un log de hasta 10389 registros en una memoria circular que puede tener su período de grabación ajustado de acuerdo con las necesidades del usuario. Las informaciones almacenadas son:

- Fecha y hora de los eventos;
- Alarmas ocurridas;
- Autodiagnósticos ocurridos;
- Mediciones efectuadas;

Opcional 3 – Monitoreo de la Calefacción y Tensión de Mando:

Permite al IDM monitorear la corriente y la temperatura del sistema de calefacción también permite que se programen algunas condiciones para que el sistema de calefacción sea encendido o apagado. La tensión de mando también puede ser monitoreada cuando esta opción está activa.

El buen funcionamiento de esta función requiere la correcta conexión de la tensión de mando, de los sensores de corriente TC y de los sensores de temperatura $PT100\Omega$ al equipo.

Opcional 4 – Medición de Posición del Conmutador:

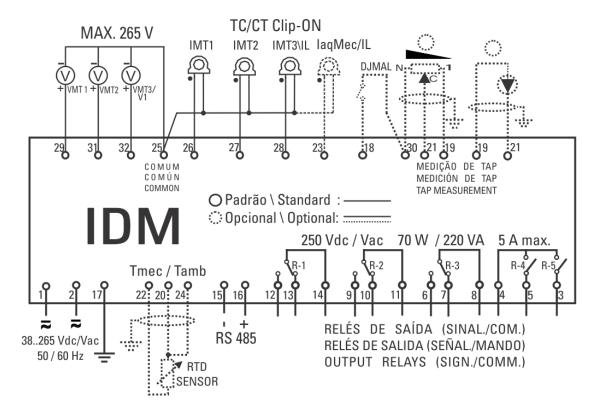
Permite conectar una corona potenciométrica o una señal analógica mA para indicar la posición de TAP del conmutador en el IDM. El IDM puede usar esta medida para simplemente indicar la posición del TAP del conmutador o para ayudar en los cálculos del asistente de mantenimiento del conmutador, otra función opcional del IDM. También permite medir la corriente de línea (IL).

Opcional 5 – Asistente de Mantenimiento del Conmutador:

Este ítem opcional expande las funcionalidades del IDM, proporcionando varias informaciones adicionales:

- Nº de operaciones y tiempo de servicio del conmutador, totales y después del último mantenimiento;
- Integración de la corriente conmutada, indicativa de desgaste de los contactos del conmutador, total y después del último mantenimiento; Indicación de la corriente de línea;

Tiempo restante para mantenimiento por tiempo de servicio, número de operaciones.



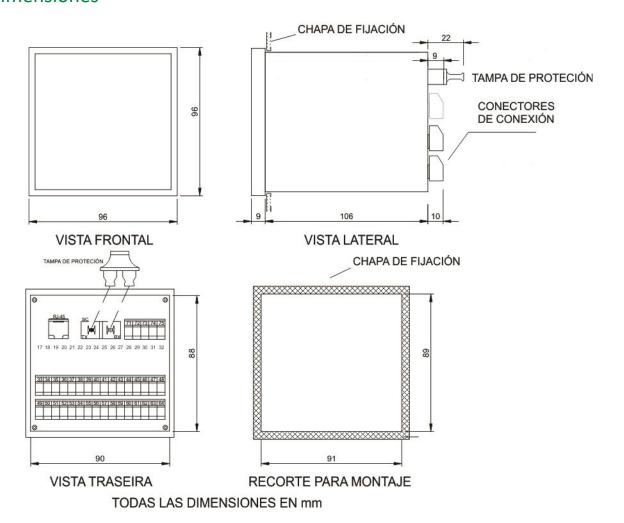
Datos Técnicos

Condición	Intervalo / Descripción
Tensión de alimentación:	38 a 265 Vca/Vcc 50/60 Hz
Consumo máximo:	≤13 W
Temperatura de operación	-40 a +85 ºC
Grado de protección	IP 20
Conexiones:	0,3 a 2,5 mm2, 22 a 12 AWG
Fijación:	Fijación en panel
Entradas de medición:	4 TCs externos clip-on 010 Aca rms / Otros rangos bajo pedido
Corrientes:	3 de 0240 Vca F-T. Otros rangos con TP externo
Tensiones:	1 sensor Pt100Ω a 0 ºC rango -55 a 200 ºC
Temperaturas:	1 libre de potencial
Contactos secos:	Transmisor potenciométrico, o loop de corriente 0-5, 0-10, 0-20
Тар:	o 4-20 mA
Errores máximos	
Corrientes:	1% de la medición en el rango 80240 Vca / 100300 Vcc
Tensiones:	_
Temperaturas:	=
remperaturus.	5,5% del midi de escala i en oi en el sensor
Salidas a relés:	3 reversibles + 2 NA/NF (especificar en la compra)
Potencia máxima de conexión:	70 W(cc) / 220 VA(ca)
Tensión máxima de conexión:	250 Vcc / 250 Vca
Corriente máxima de conducción:	
Puertos de comunicación serial:	1 RS-485 patrón
Protocolos de comunicación:	Modbus RTU, DNP3 (Opcional)

Diagramas de Conexión

En la figura se observa que la diferencia entre el hardware del IDM y del SDM está en los puertos de comunicación: sólo SDM tiene puertos Ethernet.

Uno de los opcionales de hardware es exactamente la elección del tipo de puerto que equipará el SDM, que puede venir con dos puertos de fibra o dos puertos para cable RJ-45.


Otra opción de hardware es en el método de medición de la posición de TAP, que se pueden hacer usando una corona potenciométrica o un bucle de corriente analógica.

En ambos casos, la elección debe hacerse al momento del pedido, porque son opciones que alteran el hardware del producto.

Los elementos verdes representan funciones que se pueden seleccionar mediante la parametrización y sensores que se utilizan sólo cuando ciertas opciones de firmware están activos.

Dimensiones

Especificación para Pedido

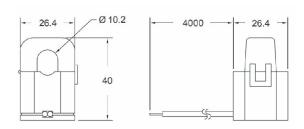
El Monitor para Torque de Conmutador – IDM es un equipo universal, con sus características seleccionadas en sus menús de programación a través de su panel frontal o por los puertos de comunicación. La entrada de alimentación es universal (38 a 265 Vcc/Vca 50/60 Hz).

De esta manera, en el pedido de compra del aparato basta especificar:

- Cantidad;
- El número de TCs Externos Tipo Ventana Seleccionable (Clip-on). La cantidad variará en función de la aplicación (monofásico o trifásico) y debe ser incluido en la orden de compra;
 - La cantidad de TPs;
 - Suministro o no de sensor PT100Ω;
 - Versión básica o las opciones deseadas;
- Si seleccionada la opción de medición TAP, también debe informar si se utilizará una corona potenciométrica o un mA señal analógica para la medición

Accesorios Opcionales

• Sensor de Temperatura Pt100Ω a 0ºC

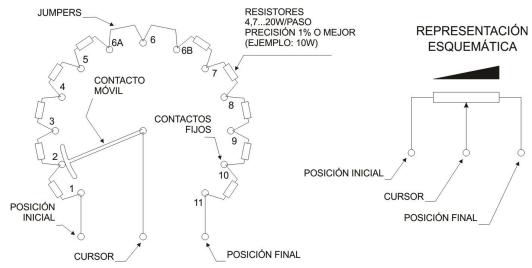

Para la medición de temperatura es necesario un sensor de temperatura instalado. Los sensores utilizados deben ser del tipo $Pt100\Omega$ a $0^{\circ}C$. En el caso de que sea necesario, Treetech dispone de sensor adecuado para la instalación en termopozo, conforme el diseño abajo (dimensiones especiales bajo consulta), suministrado como accesorio opcional.

• TCs Externos Tipo Ventana Seleccionable (Clip-on)

La utilización de TCs externos del tipo ventana con núcleo seccionable es requerida para la operación del IDM. Este ítem es suministrado en la cantidad necesaria al tipo de aplicación deseada, debiendo ser solicitada la cantidad en el pedido de compra. Él permite la instalación del producto sin la conexión directa del circuito de corriente, eliminando el riesgo de abertura accidental.

Temperatura de operación: -40...+85°C. Dimensiones (mm).

• Sensor de Temperatura Ambiente



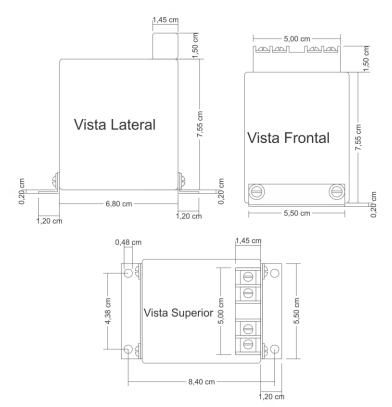
El IDM dispone de entradas para medición de temperatura que puede ser utilizada, por ejemplo, para medición de temperatura ambiente u otras. En el caso de que sea utilizada para medición da temperatura ambiente, debe ser utilizado un sensor de temperatura tipo Pt100 Ω a 0ºC instalado en un abrigo térmico, que minimiza los errores que sol, lluvia, viento, etc., le causarían a la medición. En el caso de que sea necesario, Treetech dispone de sensor y abrigo térmico adecuados para esta medición, suministrados como accesorio opcional.

• Corona Potenciométrica

El IDM admite el paso de la resistencia por un transmisor potenciométrico es en el rango de 4,7 a 20Ω , y la resistencia total de lo transmisor de 9,4 a 1000Ω . El valor de cada resistencia individuales se muestra en la figura abajo. El contacto móvil (cursor) transmisor potenciométrico puede ser de tipo "se cierra antes de que se abre" y "cierra antes de abrir" de manera intercambiable. Las resistencias del transmisor deben ser potenciómetro de precisión, es decir, los límites de error de 1% máximo. El número de tomas que pueden ser leídos por la corona es de un máximo de 35 grifos.

Si es necesario, Treetech puede proporcionar material y montaje de una corona potenciométrica adecuado para su uso en conjunción con el IDM/SDM.

Transformadores de Potencial - TPs


El TP auxiliar se debe utilizar si el motor está alimentado con tensión de CA mayor que el valor admitido por las entradas de medición IDM (265 Vac) o tensión de aislamiento del motor en relación con la tensión de control. Este artículo se ofrece en la cantidad requerida para el tipo de aplicación deseado, la cantidad debe ser solicitado en la orden de compra.

El TP ha proporcionado las siguientes características:

- Aislamiento en seco;
- Potencia: 15VA;
- Tensión Primaria: 550 V;
- Tensión Secundaria: 220 V;
- Material de aislamiento: Clase "F" (155°);
- Frecuencia: 50/60 Hz;
- Clase de aislamiento: 1,2 kV
 - (T.A.D: 4kV);
- Bobinado de cobre electrolítico, encapsulado en
 - resina epoxi; Enfriamiento: la circulación
- Instalaciones en servicio para su instalación en interiores;
- Dimensiones aproximadas (AXLXP) 85 X 75 X 55 mm;

natural del aire (AN);

Gabinetes para Instalación a la Intemperie

El IDM debe ser instalado siempre abrigado de las intemperies, y para esto es generalmente instalado en el interior de un panel de control o en el interior de un edificio. En los casos en que esto no sea conveniente, como, por ejemplo, en modernizaciones de transformadores antiguos, el IDM puede ser suministrado en gabinete a prueba de intemperie, de fácil instalación.

Características	
Fijación al trafo:	Atornillada o con imanes de alta capacidad de carga En rack extraíble
Fijación del TS:	
Conexión del cableado:	Plug multipolar removible en la parte inferior del gabinete
Grado de protección:	IP55
Prueba de aislamiento:	2kV, 50/60 Hz, 1 min

Ensayos de Tipo

,	
Ensayos:	
Inmunidad a descompensaciones (IEC 60255-22-5 e IEC 61000-4-5):	
Modo diferencial:	1 kV, 5 por polaridad (+/-)
Modo común:	2 kV, 5 por polaridad (+/-)
Inmunidad a transitorios eléctricos (IEC 60255-22-1, IEC	
61000-4-12 e IEEE C37-90-1)	2514 / 414 / 115 4444
Valor de pico 1 ^{er} ciclo, frecuencia, tiempo y rango de repetición, decaimiento a 50%	2,5 kV modo común, 1kV modo dif., 1 MHz, 2 seg, 200 descompensaciones/s, 5 ciclos
Impulso de tensión (IEC 60255-5):	200 descompensaciones/s, 3 ciclos
Forma de onda, amplitud, número de pulsos:	1,2/50 μs, 5 kV, 3 negativos y 3 positivos, intervalo 5s
Tensión aplicada (IEC 60255-5):	
Tensión soportable a la frecuencia industrial:	2 kV 60 Hz 1min contra tierra
Inmunidad a campos electromagnéticos irradiados (IEC 60255-22-3 e IEC 61000-4-3):	
Frecuencia, intensidad de campo:	80 a 2.500 MHz, 10 V/m
Inmunidad a perturbaciones electromagnéticas conducidas (IEC 60255-22-6 e IEC 61000-4-6):	
Frecuencia, intensidad de campo:	0,15 a 80 MHz, 10 V/m
Inmunidad a campos magnéticos de frecuencia industrial (IEC 61000-4-8):	
Intensidad y dirección de campo magnético:	30 A/m, 3 ejes ortogonales
Descargas electrostáticas (IEC 60255-22-2, IEC 61000-4-2 e	
IEEE C37.90.3): Intensidad y repeticiones:	Modo aire 15 kV, diez descargas por polaridad
Inmunidad a transitorios eléctricos rápidos (IEC 60255-2-4, IEC	Widdo alle 13 kV, dież descargas por polaridad
61000-4-4 e IEEE C37-90-1):	
Alimentación, entradas y salidas:	4 kV
Falla de alimentación (IEC 60255-22-11 e IEC 61000-4-11):	
Caídas de tensión:	0-80% de U, 1/2 a 300 ciclos, 85 V y 265 V, 50/60 Hz
Interrupciones curtas:	5 segundos, 85 V y 265 V, 50/60 Hz
Soportabilidad al frío (IEC 60068-2-1):	
Temperatura, tiempo de prueba:	-40 °C, 16 horas
Soportabilidad al calor seco (IEC 60068-2-2):	
Temperatura, tiempo de prueba:	+85 °C, 16 horas
Soportabilidad al calor húmedo (IEC 60068-2-78):	
Temperatura y humedad, tiempo de prueba:	+40 °C, 85% RH, 24 horas
Ciclo térmico (IEC 60068-2-14):	
Rango de temperatura, tiempo total de prueba:	-40 a +85 °C, 96 horas

3 ejes, senoidal 160 min/eje, 10 a 150 Hz, 2G

Respuesta a la vibración (IEC 60255-21-1):

Seguridad eléctrica (EN 61010-1):

Modo de aplicación, duración, frecuencia, intensidad:

Protecciones contra choque eléctrico, riesgo mecánico, riesgo por fluidos y propagación de llama Resistencia al calor y dispositivos de protección

BRASIL

Treetech Sistemas Digitais Ltda Praça Claudino Alves, 141, Centro CEP 12.940-000 - Atibaia/SP + 55 11 2410-1190

<u>comercial@treetech.com.br</u> <u>www.treetech.com.br</u>